(0) Obligation:

JBC Problem based on JBC Program:
Manifest-Version: 1.0 Created-By: 1.6.0_16 (Sun Microsystems Inc.) Main-Class: Double2
/**
* A recursive loop.
*
* All calls terminate.
*
* Julia + BinTerm prove that all calls terminate.
*
* @author <A HREF="mailto:fausto.spoto@univr.it">Fausto Spoto</A>
*/

public class Double2 {
private static void test(int n) {
for (int i = n - 1; i >= 0; i--)
test(i);
}

public static void main(String[] args) {
test(10);
}
}

(1) JBC2FIG (SOUND transformation)

Constructed FIGraph.

(2) Obligation:

FIGraph based on JBC Program:
Double2.main([Ljava/lang/String;)V: Graph of 10 nodes with 0 SCCs.

Double2.test(I)V: Graph of 18 nodes with 1 SCC.


(3) FIGtoITRSProof (SOUND transformation)

Transformed FIGraph SCCs to IDPs. Logs:


Log for SCC 0:

Generated 16 rules for P and 2 rules for R.


Combined rules. Obtained 2 rules for P and 0 rules for R.


Filtered ground terms:


120_0_test_ConstantStackPush(x1, x2) → 120_0_test_ConstantStackPush(x2)
Cond_143_1_test_InvokeMethod(x1, x2, x3, x4) → Cond_143_1_test_InvokeMethod(x1, x3, x4)
132_0_test_Return(x1) → 132_0_test_Return
Cond_120_0_test_ConstantStackPush(x1, x2, x3) → Cond_120_0_test_ConstantStackPush(x1, x3)

Filtered duplicate args:


143_1_test_InvokeMethod(x1, x2, x3) → 143_1_test_InvokeMethod(x1, x3)
Cond_143_1_test_InvokeMethod(x1, x2, x3) → Cond_143_1_test_InvokeMethod(x1, x3)

Combined rules. Obtained 2 rules for P and 0 rules for R.


Finished conversion. Obtained 2 rules for P and 0 rules for R. System has predefined symbols.


(4) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Integer, Boolean


R is empty.

The integer pair graph contains the following rules and edges:
(0): 120_0_TEST_CONSTANTSTACKPUSH(x0[0]) → COND_120_0_TEST_CONSTANTSTACKPUSH(0 <= x0[0] - 1, x0[0])
(1): COND_120_0_TEST_CONSTANTSTACKPUSH(TRUE, x0[1]) → 143_1_TEST_INVOKEMETHOD(120_0_test_ConstantStackPush(x0[1] - 1), x0[1] - 1)
(2): COND_120_0_TEST_CONSTANTSTACKPUSH(TRUE, x0[2]) → 120_0_TEST_CONSTANTSTACKPUSH(x0[2] - 1)
(3): 143_1_TEST_INVOKEMETHOD(132_0_test_Return, x0[3]) → COND_143_1_TEST_INVOKEMETHOD(x0[3] >= 0 && 0 <= x0[3] + -1, 132_0_test_Return, x0[3])
(4): COND_143_1_TEST_INVOKEMETHOD(TRUE, 132_0_test_Return, x0[4]) → 143_1_TEST_INVOKEMETHOD(120_0_test_ConstantStackPush(x0[4] + -1), x0[4] + -1)
(5): COND_143_1_TEST_INVOKEMETHOD(TRUE, 132_0_test_Return, x0[5]) → 120_0_TEST_CONSTANTSTACKPUSH(x0[5] + -1)

(0) -> (1), if ((0 <= x0[0] - 1* TRUE)∧(x0[0]* x0[1]))


(0) -> (2), if ((0 <= x0[0] - 1* TRUE)∧(x0[0]* x0[2]))


(1) -> (3), if ((120_0_test_ConstantStackPush(x0[1] - 1) →* 132_0_test_Return)∧(x0[1] - 1* x0[3]))


(2) -> (0), if ((x0[2] - 1* x0[0]))


(3) -> (4), if ((x0[3] >= 0 && 0 <= x0[3] + -1* TRUE)∧(x0[3]* x0[4]))


(3) -> (5), if ((x0[3] >= 0 && 0 <= x0[3] + -1* TRUE)∧(x0[3]* x0[5]))


(4) -> (3), if ((120_0_test_ConstantStackPush(x0[4] + -1) →* 132_0_test_Return)∧(x0[4] + -1* x0[3]))


(5) -> (0), if ((x0[5] + -1* x0[0]))



The set Q is empty.

(5) IDPNonInfProof (SOUND transformation)

The constraints were generated the following way:
The DP Problem is simplified using the Induction Calculus [NONINF] with the following steps:
Note that final constraints are written in bold face.


For Pair 120_0_TEST_CONSTANTSTACKPUSH(x0) → COND_120_0_TEST_CONSTANTSTACKPUSH(<=(0, -(x0, 1)), x0) the following chains were created:
  • We consider the chain 120_0_TEST_CONSTANTSTACKPUSH(x0[0]) → COND_120_0_TEST_CONSTANTSTACKPUSH(<=(0, -(x0[0], 1)), x0[0]), COND_120_0_TEST_CONSTANTSTACKPUSH(TRUE, x0[1]) → 143_1_TEST_INVOKEMETHOD(120_0_test_ConstantStackPush(-(x0[1], 1)), -(x0[1], 1)) which results in the following constraint:

    (1)    (<=(0, -(x0[0], 1))=TRUEx0[0]=x0[1]120_0_TEST_CONSTANTSTACKPUSH(x0[0])≥NonInfC∧120_0_TEST_CONSTANTSTACKPUSH(x0[0])≥COND_120_0_TEST_CONSTANTSTACKPUSH(<=(0, -(x0[0], 1)), x0[0])∧(UIncreasing(COND_120_0_TEST_CONSTANTSTACKPUSH(<=(0, -(x0[0], 1)), x0[0])), ≥))



    We simplified constraint (1) using rule (IV) which results in the following new constraint:

    (2)    (<=(0, -(x0[0], 1))=TRUE120_0_TEST_CONSTANTSTACKPUSH(x0[0])≥NonInfC∧120_0_TEST_CONSTANTSTACKPUSH(x0[0])≥COND_120_0_TEST_CONSTANTSTACKPUSH(<=(0, -(x0[0], 1)), x0[0])∧(UIncreasing(COND_120_0_TEST_CONSTANTSTACKPUSH(<=(0, -(x0[0], 1)), x0[0])), ≥))



    We simplified constraint (2) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (3)    (x0[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_120_0_TEST_CONSTANTSTACKPUSH(<=(0, -(x0[0], 1)), x0[0])), ≥)∧[bni_16 + (-1)Bound*bni_16] + [bni_16]x0[0] ≥ 0∧[(-1)bso_17] ≥ 0)



    We simplified constraint (3) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (4)    (x0[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_120_0_TEST_CONSTANTSTACKPUSH(<=(0, -(x0[0], 1)), x0[0])), ≥)∧[bni_16 + (-1)Bound*bni_16] + [bni_16]x0[0] ≥ 0∧[(-1)bso_17] ≥ 0)



    We simplified constraint (4) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (5)    (x0[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_120_0_TEST_CONSTANTSTACKPUSH(<=(0, -(x0[0], 1)), x0[0])), ≥)∧[bni_16 + (-1)Bound*bni_16] + [bni_16]x0[0] ≥ 0∧[(-1)bso_17] ≥ 0)



    We simplified constraint (5) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (6)    (x0[0] ≥ 0 ⇒ (UIncreasing(COND_120_0_TEST_CONSTANTSTACKPUSH(<=(0, -(x0[0], 1)), x0[0])), ≥)∧[(2)bni_16 + (-1)Bound*bni_16] + [bni_16]x0[0] ≥ 0∧[(-1)bso_17] ≥ 0)



  • We consider the chain 120_0_TEST_CONSTANTSTACKPUSH(x0[0]) → COND_120_0_TEST_CONSTANTSTACKPUSH(<=(0, -(x0[0], 1)), x0[0]), COND_120_0_TEST_CONSTANTSTACKPUSH(TRUE, x0[2]) → 120_0_TEST_CONSTANTSTACKPUSH(-(x0[2], 1)) which results in the following constraint:

    (7)    (<=(0, -(x0[0], 1))=TRUEx0[0]=x0[2]120_0_TEST_CONSTANTSTACKPUSH(x0[0])≥NonInfC∧120_0_TEST_CONSTANTSTACKPUSH(x0[0])≥COND_120_0_TEST_CONSTANTSTACKPUSH(<=(0, -(x0[0], 1)), x0[0])∧(UIncreasing(COND_120_0_TEST_CONSTANTSTACKPUSH(<=(0, -(x0[0], 1)), x0[0])), ≥))



    We simplified constraint (7) using rule (IV) which results in the following new constraint:

    (8)    (<=(0, -(x0[0], 1))=TRUE120_0_TEST_CONSTANTSTACKPUSH(x0[0])≥NonInfC∧120_0_TEST_CONSTANTSTACKPUSH(x0[0])≥COND_120_0_TEST_CONSTANTSTACKPUSH(<=(0, -(x0[0], 1)), x0[0])∧(UIncreasing(COND_120_0_TEST_CONSTANTSTACKPUSH(<=(0, -(x0[0], 1)), x0[0])), ≥))



    We simplified constraint (8) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (9)    (x0[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_120_0_TEST_CONSTANTSTACKPUSH(<=(0, -(x0[0], 1)), x0[0])), ≥)∧[bni_16 + (-1)Bound*bni_16] + [bni_16]x0[0] ≥ 0∧[(-1)bso_17] ≥ 0)



    We simplified constraint (9) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (10)    (x0[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_120_0_TEST_CONSTANTSTACKPUSH(<=(0, -(x0[0], 1)), x0[0])), ≥)∧[bni_16 + (-1)Bound*bni_16] + [bni_16]x0[0] ≥ 0∧[(-1)bso_17] ≥ 0)



    We simplified constraint (10) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (11)    (x0[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_120_0_TEST_CONSTANTSTACKPUSH(<=(0, -(x0[0], 1)), x0[0])), ≥)∧[bni_16 + (-1)Bound*bni_16] + [bni_16]x0[0] ≥ 0∧[(-1)bso_17] ≥ 0)



    We simplified constraint (11) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (12)    (x0[0] ≥ 0 ⇒ (UIncreasing(COND_120_0_TEST_CONSTANTSTACKPUSH(<=(0, -(x0[0], 1)), x0[0])), ≥)∧[(2)bni_16 + (-1)Bound*bni_16] + [bni_16]x0[0] ≥ 0∧[(-1)bso_17] ≥ 0)







For Pair COND_120_0_TEST_CONSTANTSTACKPUSH(TRUE, x0) → 143_1_TEST_INVOKEMETHOD(120_0_test_ConstantStackPush(-(x0, 1)), -(x0, 1)) the following chains were created:
  • We consider the chain COND_120_0_TEST_CONSTANTSTACKPUSH(TRUE, x0[1]) → 143_1_TEST_INVOKEMETHOD(120_0_test_ConstantStackPush(-(x0[1], 1)), -(x0[1], 1)) which results in the following constraint:

    (13)    (COND_120_0_TEST_CONSTANTSTACKPUSH(TRUE, x0[1])≥NonInfC∧COND_120_0_TEST_CONSTANTSTACKPUSH(TRUE, x0[1])≥143_1_TEST_INVOKEMETHOD(120_0_test_ConstantStackPush(-(x0[1], 1)), -(x0[1], 1))∧(UIncreasing(143_1_TEST_INVOKEMETHOD(120_0_test_ConstantStackPush(-(x0[1], 1)), -(x0[1], 1))), ≥))



    We simplified constraint (13) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (14)    ((UIncreasing(143_1_TEST_INVOKEMETHOD(120_0_test_ConstantStackPush(-(x0[1], 1)), -(x0[1], 1))), ≥)∧[1 + (-1)bso_19] ≥ 0)



    We simplified constraint (14) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (15)    ((UIncreasing(143_1_TEST_INVOKEMETHOD(120_0_test_ConstantStackPush(-(x0[1], 1)), -(x0[1], 1))), ≥)∧[1 + (-1)bso_19] ≥ 0)



    We simplified constraint (15) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (16)    ((UIncreasing(143_1_TEST_INVOKEMETHOD(120_0_test_ConstantStackPush(-(x0[1], 1)), -(x0[1], 1))), ≥)∧[1 + (-1)bso_19] ≥ 0)



    We simplified constraint (16) using rule (IDP_UNRESTRICTED_VARS) which results in the following new constraint:

    (17)    ((UIncreasing(143_1_TEST_INVOKEMETHOD(120_0_test_ConstantStackPush(-(x0[1], 1)), -(x0[1], 1))), ≥)∧0 = 0∧[1 + (-1)bso_19] ≥ 0)







For Pair COND_120_0_TEST_CONSTANTSTACKPUSH(TRUE, x0) → 120_0_TEST_CONSTANTSTACKPUSH(-(x0, 1)) the following chains were created:
  • We consider the chain COND_120_0_TEST_CONSTANTSTACKPUSH(TRUE, x0[2]) → 120_0_TEST_CONSTANTSTACKPUSH(-(x0[2], 1)) which results in the following constraint:

    (18)    (COND_120_0_TEST_CONSTANTSTACKPUSH(TRUE, x0[2])≥NonInfC∧COND_120_0_TEST_CONSTANTSTACKPUSH(TRUE, x0[2])≥120_0_TEST_CONSTANTSTACKPUSH(-(x0[2], 1))∧(UIncreasing(120_0_TEST_CONSTANTSTACKPUSH(-(x0[2], 1))), ≥))



    We simplified constraint (18) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (19)    ((UIncreasing(120_0_TEST_CONSTANTSTACKPUSH(-(x0[2], 1))), ≥)∧[1 + (-1)bso_21] ≥ 0)



    We simplified constraint (19) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (20)    ((UIncreasing(120_0_TEST_CONSTANTSTACKPUSH(-(x0[2], 1))), ≥)∧[1 + (-1)bso_21] ≥ 0)



    We simplified constraint (20) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (21)    ((UIncreasing(120_0_TEST_CONSTANTSTACKPUSH(-(x0[2], 1))), ≥)∧[1 + (-1)bso_21] ≥ 0)



    We simplified constraint (21) using rule (IDP_UNRESTRICTED_VARS) which results in the following new constraint:

    (22)    ((UIncreasing(120_0_TEST_CONSTANTSTACKPUSH(-(x0[2], 1))), ≥)∧0 = 0∧[1 + (-1)bso_21] ≥ 0)







For Pair 143_1_TEST_INVOKEMETHOD(132_0_test_Return, x0) → COND_143_1_TEST_INVOKEMETHOD(&&(>=(x0, 0), <=(0, +(x0, -1))), 132_0_test_Return, x0) the following chains were created:
  • We consider the chain 143_1_TEST_INVOKEMETHOD(132_0_test_Return, x0[3]) → COND_143_1_TEST_INVOKEMETHOD(&&(>=(x0[3], 0), <=(0, +(x0[3], -1))), 132_0_test_Return, x0[3]), COND_143_1_TEST_INVOKEMETHOD(TRUE, 132_0_test_Return, x0[4]) → 143_1_TEST_INVOKEMETHOD(120_0_test_ConstantStackPush(+(x0[4], -1)), +(x0[4], -1)) which results in the following constraint:

    (23)    (&&(>=(x0[3], 0), <=(0, +(x0[3], -1)))=TRUEx0[3]=x0[4]143_1_TEST_INVOKEMETHOD(132_0_test_Return, x0[3])≥NonInfC∧143_1_TEST_INVOKEMETHOD(132_0_test_Return, x0[3])≥COND_143_1_TEST_INVOKEMETHOD(&&(>=(x0[3], 0), <=(0, +(x0[3], -1))), 132_0_test_Return, x0[3])∧(UIncreasing(COND_143_1_TEST_INVOKEMETHOD(&&(>=(x0[3], 0), <=(0, +(x0[3], -1))), 132_0_test_Return, x0[3])), ≥))



    We simplified constraint (23) using rules (IV), (IDP_BOOLEAN) which results in the following new constraint:

    (24)    (>=(x0[3], 0)=TRUE<=(0, +(x0[3], -1))=TRUE143_1_TEST_INVOKEMETHOD(132_0_test_Return, x0[3])≥NonInfC∧143_1_TEST_INVOKEMETHOD(132_0_test_Return, x0[3])≥COND_143_1_TEST_INVOKEMETHOD(&&(>=(x0[3], 0), <=(0, +(x0[3], -1))), 132_0_test_Return, x0[3])∧(UIncreasing(COND_143_1_TEST_INVOKEMETHOD(&&(>=(x0[3], 0), <=(0, +(x0[3], -1))), 132_0_test_Return, x0[3])), ≥))



    We simplified constraint (24) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (25)    (x0[3] ≥ 0∧x0[3] + [-1] ≥ 0 ⇒ (UIncreasing(COND_143_1_TEST_INVOKEMETHOD(&&(>=(x0[3], 0), <=(0, +(x0[3], -1))), 132_0_test_Return, x0[3])), ≥)∧[bni_22 + (-1)Bound*bni_22] + [bni_22]x0[3] ≥ 0∧[(-1)bso_23] ≥ 0)



    We simplified constraint (25) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (26)    (x0[3] ≥ 0∧x0[3] + [-1] ≥ 0 ⇒ (UIncreasing(COND_143_1_TEST_INVOKEMETHOD(&&(>=(x0[3], 0), <=(0, +(x0[3], -1))), 132_0_test_Return, x0[3])), ≥)∧[bni_22 + (-1)Bound*bni_22] + [bni_22]x0[3] ≥ 0∧[(-1)bso_23] ≥ 0)



    We simplified constraint (26) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (27)    (x0[3] ≥ 0∧x0[3] + [-1] ≥ 0 ⇒ (UIncreasing(COND_143_1_TEST_INVOKEMETHOD(&&(>=(x0[3], 0), <=(0, +(x0[3], -1))), 132_0_test_Return, x0[3])), ≥)∧[bni_22 + (-1)Bound*bni_22] + [bni_22]x0[3] ≥ 0∧[(-1)bso_23] ≥ 0)



    We simplified constraint (27) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (28)    ([1] + x0[3] ≥ 0∧x0[3] ≥ 0 ⇒ (UIncreasing(COND_143_1_TEST_INVOKEMETHOD(&&(>=(x0[3], 0), <=(0, +(x0[3], -1))), 132_0_test_Return, x0[3])), ≥)∧[(2)bni_22 + (-1)Bound*bni_22] + [bni_22]x0[3] ≥ 0∧[(-1)bso_23] ≥ 0)



  • We consider the chain 143_1_TEST_INVOKEMETHOD(132_0_test_Return, x0[3]) → COND_143_1_TEST_INVOKEMETHOD(&&(>=(x0[3], 0), <=(0, +(x0[3], -1))), 132_0_test_Return, x0[3]), COND_143_1_TEST_INVOKEMETHOD(TRUE, 132_0_test_Return, x0[5]) → 120_0_TEST_CONSTANTSTACKPUSH(+(x0[5], -1)) which results in the following constraint:

    (29)    (&&(>=(x0[3], 0), <=(0, +(x0[3], -1)))=TRUEx0[3]=x0[5]143_1_TEST_INVOKEMETHOD(132_0_test_Return, x0[3])≥NonInfC∧143_1_TEST_INVOKEMETHOD(132_0_test_Return, x0[3])≥COND_143_1_TEST_INVOKEMETHOD(&&(>=(x0[3], 0), <=(0, +(x0[3], -1))), 132_0_test_Return, x0[3])∧(UIncreasing(COND_143_1_TEST_INVOKEMETHOD(&&(>=(x0[3], 0), <=(0, +(x0[3], -1))), 132_0_test_Return, x0[3])), ≥))



    We simplified constraint (29) using rules (IV), (IDP_BOOLEAN) which results in the following new constraint:

    (30)    (>=(x0[3], 0)=TRUE<=(0, +(x0[3], -1))=TRUE143_1_TEST_INVOKEMETHOD(132_0_test_Return, x0[3])≥NonInfC∧143_1_TEST_INVOKEMETHOD(132_0_test_Return, x0[3])≥COND_143_1_TEST_INVOKEMETHOD(&&(>=(x0[3], 0), <=(0, +(x0[3], -1))), 132_0_test_Return, x0[3])∧(UIncreasing(COND_143_1_TEST_INVOKEMETHOD(&&(>=(x0[3], 0), <=(0, +(x0[3], -1))), 132_0_test_Return, x0[3])), ≥))



    We simplified constraint (30) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (31)    (x0[3] ≥ 0∧x0[3] + [-1] ≥ 0 ⇒ (UIncreasing(COND_143_1_TEST_INVOKEMETHOD(&&(>=(x0[3], 0), <=(0, +(x0[3], -1))), 132_0_test_Return, x0[3])), ≥)∧[bni_22 + (-1)Bound*bni_22] + [bni_22]x0[3] ≥ 0∧[(-1)bso_23] ≥ 0)



    We simplified constraint (31) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (32)    (x0[3] ≥ 0∧x0[3] + [-1] ≥ 0 ⇒ (UIncreasing(COND_143_1_TEST_INVOKEMETHOD(&&(>=(x0[3], 0), <=(0, +(x0[3], -1))), 132_0_test_Return, x0[3])), ≥)∧[bni_22 + (-1)Bound*bni_22] + [bni_22]x0[3] ≥ 0∧[(-1)bso_23] ≥ 0)



    We simplified constraint (32) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (33)    (x0[3] ≥ 0∧x0[3] + [-1] ≥ 0 ⇒ (UIncreasing(COND_143_1_TEST_INVOKEMETHOD(&&(>=(x0[3], 0), <=(0, +(x0[3], -1))), 132_0_test_Return, x0[3])), ≥)∧[bni_22 + (-1)Bound*bni_22] + [bni_22]x0[3] ≥ 0∧[(-1)bso_23] ≥ 0)



    We simplified constraint (33) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (34)    ([1] + x0[3] ≥ 0∧x0[3] ≥ 0 ⇒ (UIncreasing(COND_143_1_TEST_INVOKEMETHOD(&&(>=(x0[3], 0), <=(0, +(x0[3], -1))), 132_0_test_Return, x0[3])), ≥)∧[(2)bni_22 + (-1)Bound*bni_22] + [bni_22]x0[3] ≥ 0∧[(-1)bso_23] ≥ 0)







For Pair COND_143_1_TEST_INVOKEMETHOD(TRUE, 132_0_test_Return, x0) → 143_1_TEST_INVOKEMETHOD(120_0_test_ConstantStackPush(+(x0, -1)), +(x0, -1)) the following chains were created:
  • We consider the chain COND_143_1_TEST_INVOKEMETHOD(TRUE, 132_0_test_Return, x0[4]) → 143_1_TEST_INVOKEMETHOD(120_0_test_ConstantStackPush(+(x0[4], -1)), +(x0[4], -1)) which results in the following constraint:

    (35)    (COND_143_1_TEST_INVOKEMETHOD(TRUE, 132_0_test_Return, x0[4])≥NonInfC∧COND_143_1_TEST_INVOKEMETHOD(TRUE, 132_0_test_Return, x0[4])≥143_1_TEST_INVOKEMETHOD(120_0_test_ConstantStackPush(+(x0[4], -1)), +(x0[4], -1))∧(UIncreasing(143_1_TEST_INVOKEMETHOD(120_0_test_ConstantStackPush(+(x0[4], -1)), +(x0[4], -1))), ≥))



    We simplified constraint (35) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (36)    ((UIncreasing(143_1_TEST_INVOKEMETHOD(120_0_test_ConstantStackPush(+(x0[4], -1)), +(x0[4], -1))), ≥)∧[1 + (-1)bso_25] ≥ 0)



    We simplified constraint (36) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (37)    ((UIncreasing(143_1_TEST_INVOKEMETHOD(120_0_test_ConstantStackPush(+(x0[4], -1)), +(x0[4], -1))), ≥)∧[1 + (-1)bso_25] ≥ 0)



    We simplified constraint (37) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (38)    ((UIncreasing(143_1_TEST_INVOKEMETHOD(120_0_test_ConstantStackPush(+(x0[4], -1)), +(x0[4], -1))), ≥)∧[1 + (-1)bso_25] ≥ 0)



    We simplified constraint (38) using rule (IDP_UNRESTRICTED_VARS) which results in the following new constraint:

    (39)    ((UIncreasing(143_1_TEST_INVOKEMETHOD(120_0_test_ConstantStackPush(+(x0[4], -1)), +(x0[4], -1))), ≥)∧0 = 0∧[1 + (-1)bso_25] ≥ 0)







For Pair COND_143_1_TEST_INVOKEMETHOD(TRUE, 132_0_test_Return, x0) → 120_0_TEST_CONSTANTSTACKPUSH(+(x0, -1)) the following chains were created:
  • We consider the chain COND_143_1_TEST_INVOKEMETHOD(TRUE, 132_0_test_Return, x0[5]) → 120_0_TEST_CONSTANTSTACKPUSH(+(x0[5], -1)) which results in the following constraint:

    (40)    (COND_143_1_TEST_INVOKEMETHOD(TRUE, 132_0_test_Return, x0[5])≥NonInfC∧COND_143_1_TEST_INVOKEMETHOD(TRUE, 132_0_test_Return, x0[5])≥120_0_TEST_CONSTANTSTACKPUSH(+(x0[5], -1))∧(UIncreasing(120_0_TEST_CONSTANTSTACKPUSH(+(x0[5], -1))), ≥))



    We simplified constraint (40) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (41)    ((UIncreasing(120_0_TEST_CONSTANTSTACKPUSH(+(x0[5], -1))), ≥)∧[1 + (-1)bso_27] ≥ 0)



    We simplified constraint (41) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (42)    ((UIncreasing(120_0_TEST_CONSTANTSTACKPUSH(+(x0[5], -1))), ≥)∧[1 + (-1)bso_27] ≥ 0)



    We simplified constraint (42) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (43)    ((UIncreasing(120_0_TEST_CONSTANTSTACKPUSH(+(x0[5], -1))), ≥)∧[1 + (-1)bso_27] ≥ 0)



    We simplified constraint (43) using rule (IDP_UNRESTRICTED_VARS) which results in the following new constraint:

    (44)    ((UIncreasing(120_0_TEST_CONSTANTSTACKPUSH(+(x0[5], -1))), ≥)∧0 = 0∧[1 + (-1)bso_27] ≥ 0)







To summarize, we get the following constraints P for the following pairs.
  • 120_0_TEST_CONSTANTSTACKPUSH(x0) → COND_120_0_TEST_CONSTANTSTACKPUSH(<=(0, -(x0, 1)), x0)
    • (x0[0] ≥ 0 ⇒ (UIncreasing(COND_120_0_TEST_CONSTANTSTACKPUSH(<=(0, -(x0[0], 1)), x0[0])), ≥)∧[(2)bni_16 + (-1)Bound*bni_16] + [bni_16]x0[0] ≥ 0∧[(-1)bso_17] ≥ 0)
    • (x0[0] ≥ 0 ⇒ (UIncreasing(COND_120_0_TEST_CONSTANTSTACKPUSH(<=(0, -(x0[0], 1)), x0[0])), ≥)∧[(2)bni_16 + (-1)Bound*bni_16] + [bni_16]x0[0] ≥ 0∧[(-1)bso_17] ≥ 0)

  • COND_120_0_TEST_CONSTANTSTACKPUSH(TRUE, x0) → 143_1_TEST_INVOKEMETHOD(120_0_test_ConstantStackPush(-(x0, 1)), -(x0, 1))
    • ((UIncreasing(143_1_TEST_INVOKEMETHOD(120_0_test_ConstantStackPush(-(x0[1], 1)), -(x0[1], 1))), ≥)∧0 = 0∧[1 + (-1)bso_19] ≥ 0)

  • COND_120_0_TEST_CONSTANTSTACKPUSH(TRUE, x0) → 120_0_TEST_CONSTANTSTACKPUSH(-(x0, 1))
    • ((UIncreasing(120_0_TEST_CONSTANTSTACKPUSH(-(x0[2], 1))), ≥)∧0 = 0∧[1 + (-1)bso_21] ≥ 0)

  • 143_1_TEST_INVOKEMETHOD(132_0_test_Return, x0) → COND_143_1_TEST_INVOKEMETHOD(&&(>=(x0, 0), <=(0, +(x0, -1))), 132_0_test_Return, x0)
    • ([1] + x0[3] ≥ 0∧x0[3] ≥ 0 ⇒ (UIncreasing(COND_143_1_TEST_INVOKEMETHOD(&&(>=(x0[3], 0), <=(0, +(x0[3], -1))), 132_0_test_Return, x0[3])), ≥)∧[(2)bni_22 + (-1)Bound*bni_22] + [bni_22]x0[3] ≥ 0∧[(-1)bso_23] ≥ 0)
    • ([1] + x0[3] ≥ 0∧x0[3] ≥ 0 ⇒ (UIncreasing(COND_143_1_TEST_INVOKEMETHOD(&&(>=(x0[3], 0), <=(0, +(x0[3], -1))), 132_0_test_Return, x0[3])), ≥)∧[(2)bni_22 + (-1)Bound*bni_22] + [bni_22]x0[3] ≥ 0∧[(-1)bso_23] ≥ 0)

  • COND_143_1_TEST_INVOKEMETHOD(TRUE, 132_0_test_Return, x0) → 143_1_TEST_INVOKEMETHOD(120_0_test_ConstantStackPush(+(x0, -1)), +(x0, -1))
    • ((UIncreasing(143_1_TEST_INVOKEMETHOD(120_0_test_ConstantStackPush(+(x0[4], -1)), +(x0[4], -1))), ≥)∧0 = 0∧[1 + (-1)bso_25] ≥ 0)

  • COND_143_1_TEST_INVOKEMETHOD(TRUE, 132_0_test_Return, x0) → 120_0_TEST_CONSTANTSTACKPUSH(+(x0, -1))
    • ((UIncreasing(120_0_TEST_CONSTANTSTACKPUSH(+(x0[5], -1))), ≥)∧0 = 0∧[1 + (-1)bso_27] ≥ 0)




The constraints for P> respective Pbound are constructed from P where we just replace every occurence of "t ≥ s" in P by "t > s" respective "t ≥ c". Here c stands for the fresh constant used for Pbound.
Using the following integer polynomial ordering the resulting constraints can be solved
Polynomial interpretation over integers[POLO]:

POL(TRUE) = 0   
POL(FALSE) = 0   
POL(120_0_TEST_CONSTANTSTACKPUSH(x1)) = [1] + x1   
POL(COND_120_0_TEST_CONSTANTSTACKPUSH(x1, x2)) = [1] + x2   
POL(<=(x1, x2)) = [-1]   
POL(0) = 0   
POL(-(x1, x2)) = x1 + [-1]x2   
POL(1) = [1]   
POL(143_1_TEST_INVOKEMETHOD(x1, x2)) = [1] + x2   
POL(120_0_test_ConstantStackPush(x1)) = x1   
POL(132_0_test_Return) = [-1]   
POL(COND_143_1_TEST_INVOKEMETHOD(x1, x2, x3)) = [1] + x3   
POL(&&(x1, x2)) = [-1]   
POL(>=(x1, x2)) = [-1]   
POL(+(x1, x2)) = x1 + x2   
POL(-1) = [-1]   

The following pairs are in P>:

COND_120_0_TEST_CONSTANTSTACKPUSH(TRUE, x0[1]) → 143_1_TEST_INVOKEMETHOD(120_0_test_ConstantStackPush(-(x0[1], 1)), -(x0[1], 1))
COND_120_0_TEST_CONSTANTSTACKPUSH(TRUE, x0[2]) → 120_0_TEST_CONSTANTSTACKPUSH(-(x0[2], 1))
COND_143_1_TEST_INVOKEMETHOD(TRUE, 132_0_test_Return, x0[4]) → 143_1_TEST_INVOKEMETHOD(120_0_test_ConstantStackPush(+(x0[4], -1)), +(x0[4], -1))
COND_143_1_TEST_INVOKEMETHOD(TRUE, 132_0_test_Return, x0[5]) → 120_0_TEST_CONSTANTSTACKPUSH(+(x0[5], -1))

The following pairs are in Pbound:

120_0_TEST_CONSTANTSTACKPUSH(x0[0]) → COND_120_0_TEST_CONSTANTSTACKPUSH(<=(0, -(x0[0], 1)), x0[0])
143_1_TEST_INVOKEMETHOD(132_0_test_Return, x0[3]) → COND_143_1_TEST_INVOKEMETHOD(&&(>=(x0[3], 0), <=(0, +(x0[3], -1))), 132_0_test_Return, x0[3])

The following pairs are in P:

120_0_TEST_CONSTANTSTACKPUSH(x0[0]) → COND_120_0_TEST_CONSTANTSTACKPUSH(<=(0, -(x0[0], 1)), x0[0])
143_1_TEST_INVOKEMETHOD(132_0_test_Return, x0[3]) → COND_143_1_TEST_INVOKEMETHOD(&&(>=(x0[3], 0), <=(0, +(x0[3], -1))), 132_0_test_Return, x0[3])

There are no usable rules.

(6) Complex Obligation (AND)

(7) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Integer, Boolean


R is empty.

The integer pair graph contains the following rules and edges:
(0): 120_0_TEST_CONSTANTSTACKPUSH(x0[0]) → COND_120_0_TEST_CONSTANTSTACKPUSH(0 <= x0[0] - 1, x0[0])
(3): 143_1_TEST_INVOKEMETHOD(132_0_test_Return, x0[3]) → COND_143_1_TEST_INVOKEMETHOD(x0[3] >= 0 && 0 <= x0[3] + -1, 132_0_test_Return, x0[3])


The set Q is empty.

(8) IDependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 2 less nodes.

(9) TRUE

(10) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Integer


R is empty.

The integer pair graph contains the following rules and edges:
(1): COND_120_0_TEST_CONSTANTSTACKPUSH(TRUE, x0[1]) → 143_1_TEST_INVOKEMETHOD(120_0_test_ConstantStackPush(x0[1] - 1), x0[1] - 1)
(2): COND_120_0_TEST_CONSTANTSTACKPUSH(TRUE, x0[2]) → 120_0_TEST_CONSTANTSTACKPUSH(x0[2] - 1)
(4): COND_143_1_TEST_INVOKEMETHOD(TRUE, 132_0_test_Return, x0[4]) → 143_1_TEST_INVOKEMETHOD(120_0_test_ConstantStackPush(x0[4] + -1), x0[4] + -1)
(5): COND_143_1_TEST_INVOKEMETHOD(TRUE, 132_0_test_Return, x0[5]) → 120_0_TEST_CONSTANTSTACKPUSH(x0[5] + -1)


The set Q is empty.

(11) IDependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 4 less nodes.

(12) TRUE